Field-based Static Taint Analysis for Industrial Microservices

Zexin Zhong™®, Jiangchao Liu*, Diyu Wu*, Peng Di*, Yulei Sui® and Alex X. Liu*

Ant Group, Hangzhou, China*

University of Technology Sydney, Australia®

{zhongzexin.zzx,jiangchao.ljc, wudiyu.wdy,dipeng.dp,alexliu}@antgroup.com,yulei.sui@uts.edu.au

ABSTRACT

Taint analysis is widely used for tracing sensitive data. However,
the state-of-the-art taint analyzers face challenges on recall, scala-
bility, and precision when applied on industrial microservices. To
overcome these challenges, we present a field-based static taint
analysis approach, which does not distinguish different instances of
the same type but distinguishes fields of the same kind for tracing
sensitive data on industrial microservices. The experimental results
demonstrate that our approach is practical in industrial scenarios.

CCS CONCEPTS

« Theory of computation — Program analysis; « Security and
privacy — Information flow control.

KEYWORDS

program analysis, taint analysis, microservices, security

ACM Reference Format:

Zexin Zhong*§, Jiangchao Liu*, Diyu Wu*, Peng Di*, Yulei Sui¥ and
Alex X. Liu*. 2022. Field-based Static Taint Analysis for Industrial Microser-
vices . In 44nd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP "22), May 21-29, 2022, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3510457.3513075

1 INTRODUCTION

Because of the increasing damages of data breaches (a single data
breach cost 4.42 million US dollars on average in 2020 [4]), many
enterprises pay much attention to software security. Taint anal-
ysis, a information tracking technique that aims to reason about
the control and data dependences from sources (of sensitive data)
to sinks (e.g., possible leakage), has been widely used for finding
potential data breachs [1, 2, 5, 6]. With the continuous expansion
of industrial microservices used in companies (e.g., Ant Group),
there is an urgent need for scalable taint analysis tools to trace
sensitive data on large-scale microservices. However, the current
state-of-the-art taint analyzers face challenges on recall, scalability,
and precision when applied on industrial microservices.
Challenge1: Recall is one of the core challenges for static taint
analysis to run on industrial applications. Most previous static taint
analyzers run their analyses based on pre-built call graphs [1, 3, 6].
However, it is hard to obtain a thorough call graph statically in
large-scale industrial microservice applications because of complex

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE-SEIP *22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9226-6/22/05...$15.00
https://doi.org/10.1145/3510457.3513075

framework behaviors such as AOP (Aspect Oriented Programming),
IoC (Inversion of Control), message services and events. While
we can supplement the call graph by manually modeling these
framework behaviors, it is costly and time-consuming, requiring
substantial human resources. What is worse, it is hard to guarantee
that all framework behaviors are properly modeled. Any missed
framework behaviors can result in missing caller-callee relations
in the generated call graph, which reduces the recall rate of taint
analyzers.

Challenge2: Scalability is another obstacle for static taint anal-
ysis. Industrial applications are typically large-scale and complex,
consisting of multiple modules. Even though it is possible to get a
sound and precise call graph, the obtained call graph will be very
large. It is costly to run precise context sensitive inter-procedural
analysis on such large-scale call graphs. What is worse, the mem-
ory usage could be overly huge if the heap is abstracted precisely
for instances with field-sensitive analysis. Thus, taint analyzers
face scalability challenge with respect to both time and memory
consumption. Field-insensitive abstraction of heap does not distin-
guish fields of an object, which is scalable but can worsen the next
challenge: precision.

Challenge3: Precision is another significant concern for static
taint analysis. Industrial microservices can heavily use complex
containers (e.g., map, list, or JSON object). Sensitive data can be
propagated through these containers. Most field-sensitive analyses
cannot handle such containers precisely, which leads to many false
positives. These large amounts of false-positives make the analysis
results useless for tracing sensitive data on industrial applications.

To resolve the above challenges and make taint analysis effective
for large-scale industrial microservices, we present our field-based
static taint analysis for tracing sensitive data.

2 OUR APPROACH

In this section, we present our field-based algorithm and explain
how it solves the recall, scalability and precision challenges of static
taint analysis on industrial microservices applications.

We choose "field-based" rather than "field-sensitive" which is
a common choice in other taint analyzers for two reasons: (1) As
we have mentioned before, the thorough call graphs of industrial
applications cannot be easily built and are usually too large for
current taint analyzers. Compared to field-sensitive analysis, field-
based analysis relies less on pre-built call graphs (which will be
shown later on the example in Figure 1); (2) Our investigation into
the industrial applications found that each field usually represents
a concept that keeps unchanged in all its usages in an application.
Sensitive data is usually propagated among the fields assigned with
specific concepts. Thus, even though field-based analysis is less
precise than field-sensitive analysis, the precision loss is limited,
especially on tracing sensitive data.

https://doi.org/10.1145/3510457.3513075
https://doi.org/10.1145/3510457.3513075

ICSE-SEIP °22, May 21-29, 2022, Pittsburgh, PA, USA

We present key features of our approach with the example in
Figure 1. The function foo(Request request) (line 2 at Figure 1) is
the request handler that will read the sensitive user phone number
from the request and store it into an object of Model. Then it calls
bar(Model model) which writes the user phone number to DB
through SampleDO. The interception function interceptorInvoke
of TaskInterceptor, which has been configured in the Spring
XML configuration, will be executed before the invocation of bar.
This interceptor will print the sensitive user phone number to a log
file.

public Handler{
public void foo(Request request){
Model model = new Model();
model.setPhoneNumber(request.getPhoneNumber());
bar(model);}
public void bar(Model model){
SampleDO sampleDO = new SampleDO();
sampleDO.setPhoneNumber(model.getPhoneNumber());
DAO.insert(sampleDO);} }
public TaskInterceptor extends Interceptor {
public void interceptorInvoke (MethodInvocation
invocation){
Model interModel = invocation . getMethod().
getParameter () . get (0) ;
Log. print (interModel. getPhoneNumber());} }

O 00 N N U W N =

—_ =
_= o

—_
oo

—_
w

Figure 1: Motivating Example

There are two potential sensitive data leakage: one is to the DB in
bar; the other is to the log file in the function interceptorInvoke.
Most static taint analyzers can find the first leakage easily. However,
they would fail to find the second one if the interception mechanism
defined in Spring XML files are not properly modeled. In field-based
analysis, the field phoneNumber of the class Model is seen as the
same everywhere. Our field-based analysis will find the sensitive
phone number is propagated to both DB and the log file, without any
modeling of the interception mechanism in the Spring framework.
This feature of the field-based algorithm indicates better scalability
and recall for tracing sensitive data on large-scale microservices
applications. It is also worth mentioning that, the field phoneNumer
is assigned with a specific concept: the phone number of users.
Programmers usually only use it to carry phone numbers. What is
more, other fields (e.g.,name) are usually never used to carry user
phone numbers. This phenomenon undermines the precision loss
of field-based analysis compared to field sensitive analysis.

Furthermore, our approach models the operation of the fre-
quently used containers (map, JSON, list, etc.) to support the field-
based algorithm to trace sensitive data precisely within those con-
tainers. This container model improves the precision of our tool
because of the precise data propagation in complex containers.

3 EXPERIMENT AND EVALUATION

We have implemented the proposed field-based approach on Java
with GraalVM at Ant Group. The implementation has been deployed
on a set of elastic cloud clusters, each of which is with eight 2.6GHz
cores and a RAM of 64 GB. In industrial code, libraries are heavily
used. We set a blacklist to ignore most of them. To evaluate the

Zexin Zhong, et al.

efficiency of the proposed approach, we use a set of production
applications, which consists of 6 microservices applications in Java
used in Ant Group for the experiment. The experimental results are
shown in Table 1. The Column "Name" indicates the names of each
microservices, which are anonymized. The Column "App" indicates
the size of application bytecode of the analyzed microservices,
measured in Megabytes. The Column ‘Lib’ indicates the sizes of the
library bytecode in Megabytes. The column ‘Time’ represents the
time consumption of our implementation for the analysis on the
benchmarks in seconds.

The results demonstrate that our approach runs efficiently on
large industrial microservices. The average time consumption of the
proposed approach on the production-benchmark is 161 seconds.
Even though for the worst case, which has 26.4MB application
bytecode, the field-based approach generates the taint analysis
results in 369 seconds.

Name | App(MB) | Lib(MB) | Time(s)
M1 1.3 193.9 14
M2 4.7 78 67.97
M3 15.4 68.2 166.89
M4 17.6 85.5 167.41
M5 18.2 80.6 180.8
Me 26.4 173.3 369
Avg 13.94 113.25 161.0

Table 1: Production-benchmark and results

4 CONCLUSION

This paper presents a field-based static taint analysis approach
for tracking sensitive data in large-scale industrial microservices.
Benefitting from the the field-based algorithm, which does not
distinguish instances of the type but distinguishes fields of the
same type, our approach is practical in industrial scenarios for
sensitive data tracking.

5 ACKNOWLEDGMENTS

This work was supported by Ant Group through Ant Research
Program.

REFERENCES

[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-

Droid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware Taint

Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI ’14). 259-269.

Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen Nguyen,

and Martin C. Rinard. 2015. Information Flow Analysis of Android Applications

in DroidSafe. In 22nd Annual Network and Distributed System Security Sympo-
sium, NDSS 2015. https://www.ndss-symposium.org/ndss2015/information-flow-
analysis-android-applications-droidsafe

[3] WeiHuang, Yao Dong, Ana Milanova, and Julian Dolby. 2015. Scalable and Precise
Taint Analysis for Android. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis (ISSTA 2015). 106-117.

[4] IBM Security and the Ponemon Institute. 2021. Cost of a Data Breach Report 2021.
Technical Report. IBM Corporation.

[5] Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp,
and Ryan Berg. 2011. F4F: Taint Analysis of Framework-Based Web Applica-
tions. In Proceedings of the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA ’11). 1053-1068.

[6] Jie Wang, Yunguang Wu, Gang Zhou, Yiming Yu, Zhenyu Guo, and Yingfei Xiong.
2020. Scaling Static Taint Analysis to Industrial SOA Applications: A Case Study
at Alibaba. In ESEC/FSE20. 1477-1486.

&2

https://www.ndss-symposium.org/ndss2015/information-flow-analysis-android-applications-droidsafe
https://www.ndss-symposium.org/ndss2015/information-flow-analysis-android-applications-droidsafe

	Abstract
	1 Introduction
	2 Our Approach
	3 Experiment and Evaluation
	4 conclusion
	5 ACKNOWLEDGMENTS
	References

